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Abstract. Charge transfer states are considered in chain molecules, such as those of selenium
or tellurium, when the molecule has a dangling bond. A simple model for these states, in which
the dangling bond becomes negatively charged and the hole is distributed among the lone pair
states of the atoms which constitute the chain molecule, is solved. The results should be useful
in helping to unravel the structural, thermodynamic, and electronic properties of materials with
such molecules.

A unified study is required to understand the electronic, structural and thermodynamic
properties of matter. To attempt a microscopic understanding of materials which have
the simplest directional bonds, certain electronic states of a model of the constituent
structures are considered. The materials of interest are composed of atoms with an electronic
configuration of s2 p4, outside a closed shell; selenium and tellurium are examples of such
materials [1, 2, 3]. In a twofold coordinated atom, two of its valence electrons form the
covalent bonds with the nearest-neighbour atoms, while its remaining valence electrons
occupy a lone pair state and a more deeply bound state. A material in which all atoms
were two-fold coordinated would be a semiconductor with the energy gap corresponding to
excitation of lone pair electrons to antibonding states.

Alternatives to two-fold coordination are possible. In non-crystalline cases, singly
coordinated atoms give rise to dangling bonds, except in the cases of the doubly bonded
dimer and closed rings. In a chain of two-fold coordinated atoms, with at least one loose
end, electrons from within the chain can charge the dangling bonds. Such electrons will most
favourably come from lone pair states and will not be localized within a single site, as such
localization would not be an eigenstate of the system unless self-trapping took place. This
charge transfer model is implied, apparently as a suspicion, in the recent interpretation of
the optical reflectivity of Se–Te alloys [4], on referring to liquid Te. Also, the possibility of
charge transfer is raised in a theoretical calculation, by Koslowski [5], of the electronic states
of randomly conformed chains of Se atoms. In this latter case, the dangling bonds are said to
have unit negative charge with the positive charge being in a bipolaron state (two dangling
bonds exist in the 64-atom chains considered, but it is unclear why self-trapping must take
place); however, although that work attempts to estimate the electrostatic interaction, it does
not calculate it in detail. Finally, in a locally neutral situation, three-fold coordination of an
atom would require promotion of a fourth electron to an antibonding state. Based on charged
defects, it appears that the most favourable method of achieving three-fold coordination,
without occupancy of the antibonding states, is the fusion of a charged dangling bond with
the interior of a positive chain, leaving a net positive charge at the junction. Such fusion is
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similar to the joining of two neutral chains by leaving a positive three-fold coordinated atom
and a negative dangling bond, the valence-alternation-pair model suggested for amorphous
solid selenium, which depends on the famous negative effective correlation energy [6, 7].

Attention is now focused on an extremely simple model of charge transfer in a single
chain molecule. To make the problem fully tractable, a semi-infinite molecule is considered.
The atoms are assumed to be at integer multiples of a lengthd from a dangling bond. The
dangling bond is negatively charged, with that charge localized at the end atom, and the
compensating hole is distributed among the lone pair states of all the atoms in the chain,
including the end one. The eigenstates are obtained.

This model is quite similar to that solved long ago by Merrifield [8], for charge transfer
excitons in a linear molecular crystal. The optical properties of that model were considered
by Hernandez and Choi [9]. That work is modified here for the present purpose. A tight-
binding basis will be used. An extra electron is placed at the chain end (n = 0) and
the basis functions, labelled by|n〉, describe a hole in the lone pair state of the atom at
position nd (n = 0 is included). Figure 1 is a schematic idealization of the labelling,
the non-vanishing matrix elements, and the ‘chain’. The diagonal matrix elements of the
charge transfer Hamiltonian are〈n|H |n〉 = V (n). The energy of the neutral dangling bond
is V (0) = −A0, and V (n > 0) = −A1/n, with the Coulomb interaction between an
electron and a hole at nearest-neighbour sites beingA1 = e2/(εd); ε is a phenomenological
dielectric constant. It is assumed that the only non-zero off-diagonal elements are those
which represent hole hopping between nearest-neighbour sites:〈0|H |1〉 = 〈1|H |0〉 = t1,
and 〈1|H |2〉 = 〈n|H |n ± 1〉 = t , for n > 1. It is not required thatt1 = t , as the site
at the origin is clearly different from the others. The zero of energy has a hole localized
at |n → ∞〉, and this reference level is the energy of theC−1 defect (a negative, singly
coordinated chalcogen atom; this nomenclature was developed elsewhere [7]); as noted
above,V (0) is the energy ofC0

1 (the neutral dangling bond).

n 0 1 2 3....

< n|H |n > −A0 −A1 −A1/2 −A1/3

< n|H |n± 1> ← t1→ ← t → ← t →

: : : :

: O : O : O : O

.. .. .. ..

Figure 1. Schematic of atom labelling, diagonal matrix elements for the hole at siten, hole-
hopping matrix elements (only to nearest neighbours), and the molecular ‘chain’. In the ‘chain’
the atomic sites are denoted by anO with dots indicating valence electrons. Electrons shared in
a covalent bond are shown as a pair of dots between two atomic sites. Then = 0 site is shown
as negatively charged, and the compensating hole is to be distributed among all chain sites.

The system eigenstates are linear combinations of the tight-binding basis:

|φ〉 = 6αn|n〉. (1)

With the definitionsx = E/(2t), E being the eigenenergies,V0 = A0/(2t), V1 = A1/(2t)
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andr = t1/(2t), the Schr̈odinger equation is written as follows.

(x + V1/n)αn = (αn−1+ αn+1)/2 n > 1 (2a)

(x + V1)α1 = rα0+ α2/2 (2b)

(x + V0)α0 = rα1. (2c)

Linearly independent solutions of equation (2a) are the even states obtained previously
[8, 9]. Changing variables toz andλ, with x = (z+ z−1)/2 andV1 = λ(z− z−1)/2, allows
the solutions to be written as:

γ1(n) = z−n+10(n− λ)F (1− n; 1+ λ; 1− n+ λ; z2)/[0(n)0(1− λ)] (3a)

γ2(n) = zn0(1− λ)0(1+ n)F (n;−λ; 1+ n− λ; z2)/0(1− λ+ n) |z| < 1. (3b)

F(a; b; c; z) are the hypergeometric functions and0(a) are the gamma functions [10].
Then, theαn in equation (1) can be written as a linear combination of the solutions in
equations (3a) and (3b),

αn = α0[c1γ1(n)+ c2γ2(n)] n > 0 (4)

with coefficients chosen to satisfy equations (2b) and (2c). The constantα0 is to be
determined from the orthonormality of the eigenfunctions.

The bound-state eigenvalues are obtained from the boundary condition requiring that
αn→∞ vanish. Thus, the coefficientsc1 = 0 andc2 = (x+V0)/[rγ2(1)], while it is required
that

I = r2/(x + V0). (5)

The functionI is defined by

I ≡ (x + V1)− [zF (2;−λ; 3− λ; z2)]/[(2− λ)F (1;−λ; 2− λ; z2)]. (6)

For these bound states, it is required that−1 < z < 0, so thatx < −1 andλ > 0.
A numerical solution of equation (5) is obtainable as follows. From the definitions,I

can be recast as a function of the constantV1 and the variableλ, by using the relations
z±1 = ±(V1/λ) − [(V1/λ)

2 + 1]1/2 and x = −[(V1/λ)
2 + 1]1/2. Then, it can be verified

from equation (6) thatI (λ→ 0+)→−∞, sincex →−∞ andI → (x + V1)− z/2. The
integer values ofλ(= p) are poles of bothγ2(1, 2), but the poles cancel leavingI well
behaved for those parameter values; in fact,I (λ = p > 0) = 0. Finally, I is continuous
except for simple poles at the zeros ofγ2(1). The above statements immediately allow
bounds to be placed on the eigenvalues. Asλ increases from zero, the right hand side of
equation (5) decreases (from its zero value atλ = 0). The ground state eigenvalue must
therefore be found within the interval 0< λ < 1. If V0 > [V 2

1 + 1]1/2, the ground state is
lower than in the alternative case sincer2/(x + V0) will then have a pole forλ < 1, and
this value ofλ yields an upper bound to the ground state energy. Thus, for all cases, the
ground state energy is lower than allV (n). As far as excited states are concerned, there is
another solution to equation (5) in each of the intervalsp < λ < p+ 1, for positive integer
values ofp. As long asx < −V0, an eigenvalue is to be found between each value ofλ

which correspond to a pole ofI and the next higher integer. Oncex > −V0, there is an
eigenvalue at a smallerλ than each of those for whichI has a pole.

As a numerical example, consider the case in whichV1 = 1.5, V0 = 1.2 andr = 0.3789.
The value ofV1 equatesx = −V0 with λ = 2.261. Thus, the signs of the two sides of
equation (5) imply that the lowest eigenvalues correspond to the following intervals:

0< λ0 < 1, −∞ < x0 < −1.803

1.694< λ1 < 2, − 1.336< x1 < −1.250
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2.261< λ2 < 2.729, − 1.20< x2 < −1.141

3< λ3 < 3.741, − 1.118< x3 < −1.077

and so on. Finally, using the given value ofr allows the eigenvalues to be obtained:

λ0 = 0.900, x0 = −1.944

λ1 = 1.793, x1 = −1.304

λ2 = 2.657, x2 = −1.148

λ3 = 3.548, x3 = −1.086

and so on. For the ground state, the normalization constant is found to beα0 = 0.409,
which allows the charges on the atoms (labelled byn) to be found. In units of the charge
on the proton, the atomic charges (q) are as follows.

n 0 1 2 3 4

q −0.833 +0.644 +0.162 +0.025 +0.003

In this example,C0
1 is at an energy of 2.4t below that ofC−1 ; the energy of the ground state

is an additional 1.488t lower.
On reconsidering the results, it may not be obvious why the ground state has a value

lower than all diagonal elements of the Hamiltonian, the effective potential energy. The
reason is clearer when it is recalled that the continuum does not begin atx = V (∞) = 0,
but rather atx = −1; taking out the highest energy electron results in the lowest energy
unbound hole, and a system energy of minus half the lone pair band width. Although
such a state need not be lower in energy thanV (0), already the continuum begins at an
energy belowV (∞). Naturally, it is the possibility of hopping that lowers the energy of
any localized, tight-binding state from the value appropriate to its diagonal matrix element.

In real materials there are no isolated, semi-infinite chains, with equally spaced atoms.
However, it does not seem possible, for systems with collections of chains longer than a
few atoms, that real situations exist which will void the conclusion that a dangling bond
must have some negative charge on it. Finite length chains should have some negative
charge on both dangling bonds, by symmetry.

To touch on implications of the present result, magnetic and transport results should be
reconsidered. For example, data from Warren and Dupree [11], in liquid selenium, were
interpreted as giving evidence that, as temperature increases, each chain scission creates
two unpaired spins and two neutral dangling bonds. With the present result, unpaired spins
do arise from a scission, but the dangling bonds are not neutral. Temperature-dependent
average chain lengths and an enthalpy of chain scission were obtained from the temperature
dependence of the magnetic properties. Focusing on the results herein, the enthalpy of
chain scission is to be apportioned among the breaking of a covalent bond, the quite
small mechanical work due to the volume change in forming two chains from one, and
the temperature-dependent average Coulomb energy. The apportioning is important, as
energies corresponding to covalent bonds in short chains are required to understand, among
other things, the chain–dimer equilibrium which is required for calculating the liquid–vapour
coexistence. With regards to transport in materials with such chains, high densities of short
chains should be the prerequisite for metallic behaviour. The conduction could proceed
by hole transport in the lone pair band, from chain to chain, without a requirement that
the gap from lone pair states to antibonding ones disappear. However, it is required that
the density of available states becomes large enough to overcome localization due to the
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disordered potential. The disorder is topological, in the fluid or amorphous solid, and also
has contributions due to the charge distribution. That the metallic properties are correlated
to a high density of short chains is known, in both fluid selenium and tellurium. That it is
most probably due to holes in the lone pair band has been considered, but it was unclear
where the electrons, which caused the holes, resided. The present concepts, applied to
transport properties, would support interpretations, based on structural studies [2, 3], that
metallic conduction in selenium and tellurium fluids does not require three-fold covalent
bonding, in contrast to previous speculation [12]. It does require, obviously, that charge
may transfer from chain to chain.

References

[1] Cutler M Liquid Semiconductors1977 (New York: Academic)
[2] Enderby J E and Barnes A C 1990Rep. Prog. Phys.53 85
[3] Tamura K 1996J. Non-Cryst. Sol.205–207239
[4] Ikemoto H, Yamamoto I, Tsuzuki T and Endo H 1996J. Non-Crys. Sol.205–207347
[5] Koslowski T 1997J. Phys.: Condens. Matter9 613
[6] Anderson P W 1975Phys. Rev. Lett.34 953

Street R A and Mott N F 1975. Phys. Rev. Lett.35 1293
[7] Kastner M, Adler D and Fritzsche H 1976Phys. Rev. Lett.37 1504
[8] Merrifield R E 1961J. Chem. Phys34 1835
[9] Hernandez J P and Choi S 1969J. Chem. Phys.50 1524

[10] Abramowitz M and Stegun I A 1964Handbook of Mathematical Functions(Washington, DC: National
Bureau of Standards) pp 556, 255

[11] Warren W W Jr andDupree R 1980Phys. Rev.B 22 2257
[12] Cabane B and Friedel J 1971J. Phys.32 73


